首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1824篇
  免费   168篇
  国内免费   103篇
安全科学   116篇
废物处理   12篇
环保管理   544篇
综合类   530篇
基础理论   282篇
环境理论   54篇
污染及防治   21篇
评价与监测   96篇
社会与环境   305篇
灾害及防治   135篇
  2024年   2篇
  2023年   58篇
  2022年   41篇
  2021年   55篇
  2020年   71篇
  2019年   110篇
  2018年   109篇
  2017年   118篇
  2016年   110篇
  2015年   121篇
  2014年   61篇
  2013年   194篇
  2012年   112篇
  2011年   114篇
  2010年   91篇
  2009年   65篇
  2008年   66篇
  2007年   62篇
  2006年   73篇
  2005年   48篇
  2004年   62篇
  2003年   49篇
  2002年   37篇
  2001年   34篇
  2000年   62篇
  1999年   55篇
  1998年   17篇
  1997年   23篇
  1996年   11篇
  1995年   6篇
  1994年   6篇
  1993年   18篇
  1992年   3篇
  1991年   8篇
  1990年   9篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有2095条查询结果,搜索用时 15 毫秒
101.
Obtaining knowledge about factors affecting health, safety and environment (HSE) is of major interest to the petroleum industry, but there is currently a severe shortage of relevant studies. The aim of this study was to examine the relative influence of offshore installation (local working environment) and company belonging on employees’ opinions concerning occupational health and safety. We analyzed data from a safety climate survey answered by 4479 Norwegian offshore petroleum employees in 2005 on the dimensions “Safety prioritisation”, “Safety management and involvement”, “Safety versus production”, “Individual motivation”, “System comprehension” and “Competence” using one way analysis of variance (ANOVA), effect size and mixed model. The companies differed significantly for “Safety prioritisation”, “Safety versus production”, “Individual motivation”, “System comprehension” and “Competence”. The local offshore installation explained more of the safety climate than the company they were employed in or worked for did.  相似文献   
102.
Abstract: Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate‐driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate‐change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted‐range species not included in our range‐shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted‐range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad‐scale guidance for directing conservation efforts.  相似文献   
103.
Abstract: The hydrologic performance of DRAINMOD 5.1 was assessed for the southern Quebec region considering freezing/thawing conditions. A tile drained agricultural field in the Pike River watershed was instrumented to measure tile drainage volumes. The model was calibrated using water table depth and subsurface flow data over a two‐year period, while another two‐year dataset served to validate the model. DRAINMOD 5.1 accurately simulated the timing and magnitude of subsurface drainage events. The model also simulated the pattern of water table fluctuations with a good degree of accuracy. The R2 between the observed and simulated daily WTD for calibration was >0.78, and that for validation was 0.93. The corresponding coefficients of efficiency (E) were >0.74 and 0.31. The R2 and E values for calibration/validation of subsurface flow were 0.73/0.48 and 0.72/0.40, respectively. DRAINMOD simulated monthly subsurface flow quite accurately (E > 0.82 and R2 > 0.84). The model precisely simulated daily/monthly drain flow over the entire year, including the winter months. Thus DRAINMOD 5.1 performed well in simulating the hydrology of a cold region.  相似文献   
104.
Young, Charles A., Marisa I. Escobar‐Arias, Martha Fernandes, Brian Joyce, Michael Kiparsky, Jeffrey F. Mount, Vishal K. Mehta, David Purkey, Joshua H. Viers, and David Yates, 2009. Modeling the Hydrology of Climate Change in California’s Sierra Nevada for Subwatershed Scale Adaptation. Journal of the American Water Resources Association (JAWRA) 45(6):1409‐1423. Abstract: The rainfall‐runoff model presented in this study represents the hydrology of 15 major watersheds of the Sierra Nevada in California as the backbone of a planning tool for water resources analysis including climate change studies. Our model implementation documents potential changes in hydrologic metrics such as snowpack and the initiation of snowmelt at a finer resolution than previous studies, in accordance with the needs of watershed‐level planning decisions. Calibration was performed with a sequence of steps focusing sequentially on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. An assessment of the calibrated streamflows using goodness of fit statistics indicate that the model robustly represents major features of weekly average flows of the historical 1980‐2001 time series. Runs of the model for climate warming scenarios with fixed increases of 2°C, 4°C, and 6°C for the spatial domain were used to analyze changes in snow accumulation and runoff timing. The results indicated a reduction in snowmelt volume that was largest in the 1,750‐2,750 m elevation range. In addition, the runoff center of mass shifted to earlier dates and this shift was non‐uniformly distributed throughout the Sierra Nevada. Because the hydrologic model presented here is nested within a water resources planning system, future research can focus on the management and adaptation of the water resources system in the context of climate change.  相似文献   
105.
提供了对温度和湿度气候试验箱内部环境条件进行不确定度分析的方法。首先介绍了测量的不确定度概念,然后讨论容差的意义。考虑到湿度和温度测量是采用确定和合成不确定度。结合校准空载试验箱和有负载试验箱的条件测量的案例。最后,逐条整理成为范本用于分析结果以给出规范的不确定度评估依据。  相似文献   
106.
Abstract: Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process‐based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf‐area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.  相似文献   
107.
哥本哈根会议上碳关税引发热议,成为发达国家和发展中国家讨论的焦点.本文从碳关税的内涵出发,梳理了有关碳关税问题的已有研究,通过建立一个简单的局部均衡模型,对征收碳关税情况下进口国、出口国的福利以及全球福利变化进行了分析,研究得出:进口国征收碳关税能提高本国福利水平,减低出口国的福利水平,但福利变化程度取决于进口国国内碳税、出口国是否征税国内碳税、进出口国国内碳密集度水平等情况.进一步.由于温室气体排放是全球公共品,用全球福利最大化代替进口国福利最大的约束条件,探讨了最优碳关税的确定方法,认为最优碳关税取决于需求函数和供给函数的值,由出口国国内碳税与外部性的差异与进口国国内碳税与外部性差异的比值来决定.温室气体减排是国际贸易面临的新问题,碳关税仅仅拉开了以气候变化之名进行国际贸易保护的序幕,如何有效地将国际气候变化规则纳入国际贸易利益的维护中是我们未来面临的重要课题.  相似文献   
108.
Jin, Xin and Venkataramana Sridhar, 2012. Impacts of Climate Change on Hydrology and Water Resources in the Boise and Spokane River Basins. Journal of the American Water Resources Association (JAWRA) 48(2): 197‐220. DOI: 10.1111/j.1752‐1688.2011.00605.x Abstract: In the Pacific Northwest, warming climate has resulted in a lengthened growing season, declining snowpack, and earlier timing of spring runoff. This study characterizes the impact of climate change in two basins in Idaho, the Spokane River and the Boise River basins. We simulated the basin‐scale hydrology by coupling the downscaled precipitation and temperature outputs from a suite of global climate models and the Soil and Water Assessment Tool (SWAT), between 2010 and 2060 and assess the impacts of climate change on water resources in the region. For the Boise River basin, changes in precipitation ranged from ?3.8 to 36%. Changes in temperature were expected to be between 0.02 and 3.9°C. In the Spokane River region, changes in precipitation were expected to be between ?6.7 and 17.9%. Changes in temperature appeared between 0.1 and 3.5°C over a period of the next five decades between 2010 and 2060. Without bias‐correcting the simulated streamflow, in the Boise River basin, change in peak flows (March through June) was projected to range from ?58 to +106 m3/s and, for the Spokane River basin, the range was expected to be from ?198 to +88 m3/s. Both the basins exhibited substantial variability in precipitation, evapotranspiration, and recharge estimates, and this knowledge of possible hydrologic impacts at the watershed scale can help the stakeholders with possible options in their decision‐making process.  相似文献   
109.
Abstract: Water supply uncertainty continues to threaten the reliability of regional water resources in the western United States. Climate variability and water dispute potentials induce water managers to develop proactive adaptive management strategies to mitigate future hydroclimate impacts. The Eastern Snake Plain Aquifer in the state of Idaho is also facing these challenges in the sense that population growth and economic development strongly depend on reliable water resources from underground storage. Drought and subsequent water conflict often drive scientific research and political agendas because water resources availability and aquifer management for a sustainable rural economy are of great interest. In this study, a system dynamics approach is applied to address dynamically complex problems with management of the aquifer and associated surface‐water and groundwater interactions. Recharge and discharge dynamics within the aquifer system are coded in an environmental modeling framework to identify long‐term behavior of aquifer responses to uncertain future hydrological variability. The research shows that the system dynamics approach is a promising modeling tool to develop sustainable water resources planning and management in a collaborative decision‐making framework and also to provide useful insights and alternative opportunities for operational management, policy support, and participatory strategic planning to mitigate future hydroclimate impacts in human dimensions.  相似文献   
110.
能源消耗是中国最主要的碳排放源,而地方政府是碳管理的基层行政单元,因此,有效控制区域的能源碳排放是碳减排工作的重中之重。区域消耗的能源中,外来电是缓解当地用电压力的重要措施,但一般外来电引起的碳排放易被忽视。将外来电导致的碳排放纳入区域能源碳排放核算体系内,利用部门分析和范围分析法建立了包含外来电分析的能源碳排放核算系统,以上海市崇明县为例进行了应用。研究表明:(1)2000~2009年崇明的能源碳排放增长较快,由181万t增至477万t(CO2当量);(2)碳排放总量的8212%来自3个部门:工业、建筑业和生活部门;(3)2009年,购买电力导致的间接碳排放达2316%,体现了实施碳管理时考虑外来电力的必要性  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号